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We use three-dimensional numerical simulations to explore the phase diagram of driven flux-line lattices in
the presence of weak random columnar disorder at finite temperature and high driving force. We show that the
moving Bose glass phase exists in a large range of temperature up to its melting into a moving vortex liquid.
It is also remarkably stable upon increasing velocity. The dynamical transition to the correlated moving glass
expected at a critical velocity is not found at any velocity accessible to our simulations. Furthermore, we show
the existence of an effective static tin roof pinning potential in the direction transverse to motion, which
originates from both the transverse periodicity of the moving lattice and the localization effect due to the
correlated disorder. Using a simple model of a single elastic line in such a periodic potential, we obtain a good
description of the transverse field penetration at surfaces as a function of thickness in the moving Bose glass
phase.
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Periodic structures driven on a random substrate, such as
vortex lattices in type II superconductors, exhibit a rich va-
riety of phases controlled by the interplay between elasticity,
disorder, temperature, and driving force.1–4 At large enough
velocity, where the efficiency of the quenched disorder is
reduced leading to dynamical reordering,5 several moving
glass phases were theoretically predicted.2,3 In particular,
considering elastic deformations for weak disorder or large
velocity in d=3, a topologically ordered phase is
predicted,2,6 namely, the moving Bragg glass �MBG�. The
extension to correlated disorder led to the prediction of the
moving Bose glass �MBoG� �Ref. 7� characterized by the
dynamical transverse Meissner effect �DTME�, i.e., the tilt
response to transverse field vanishes below a critical value.
At finite temperature, renormalization-group calculations7

show a transition at a critical velocity vc from the MBoG to
a very high velocity glassy phase in which the DTME van-
ishes, namely, the correlated moving glass �CMG�. Clear evi-
dence of the MBoG was found in numerical simulations at
T=0.8 However, a complete theory of elastic medium at high
velocity is lacking, and the stability of moving elastic phases
such as MBG or MBoG at the thermodynamic limit is still
debated.

In this Brief Report, we perform three-dimensional
molecular-dynamics simulations of superconductor vortices
with weak random columnar pinning. We show in details the
existence of the MBoG at finite temperature. It appears so
stable that the expected dynamical transition to the CMG is
not found. Furthermore, we find the existence of an effective
pinning potential that is z independent �z being the direction
of the columnar pins� and periodic in the direction transverse
to motion. Such effective pinning potential appears as an
additional signature of the MBoG. Consequently, we extend
to finite temperatures a model of a single elastic line into a
tin roof potential,8 which captures the DTME property of
MBoG and yields quantitative understanding of finite-
thickness effects. Finally, the dynamical melting of MBoG is
studied as temperature is increased.

Following Ref. 8, we model a stack of Nz Josephson-

coupled parallel superconducting planes of thickness d with
interlayer spacing s. Each layer in the �x ,y� plane contains
Nv pancake vortices interacting with Np columnar pins par-
allel to the z direction. The overdamped equation of motion
of a pancake i at position ri reads as

�
dri

dt
= − �

j�i

�iU
vv��ij,zij� − �

p

�iU
vp��ip� + FL + Ftilt�z�

+ Fi
th�t� , �1�

where �ij and zij are the components of rij=ri−rj in
cylindrical coordinates, �ip is the in-plane distance between
the pancake i and a pinning site in the same layer at rp, and
�i is the two-dimensional gradient operator acting in the
�x ,y� plane. � is the viscosity coefficient, FL=FLx̂ is the
Lorentz driving force due to an applied current, Fi

th is the
thermal noise with �Fi,�

th �=0, and �Fi,�
th �t�Fj,�

th �t���
=2�kBT�ij�����t− t�� where � ,�=x ,y and kB=1 is
the Boltzmann constant. Ftilt�z� is the surface force due
to the field tilting away from the z axis in the y
direction. This force acts as a torque on each flux
line, i.e., Ftilt�z=0�=−Ftilt�z=Nzs�=Ftiltŷ and Ftilt�z�=0
for pancakes in the bulk. The tilting force modulus is
defined by Ftilt=�2�0Hy /4�=8��2�0	ab

2 Hy /�3a0
2Hz, where

�0= ��0 /4�	ab�2, 	ab is the in-plane magnetic penetration
depth, a0 is the average vortex distance, Hy is the transverse
field component, and � is the anisotropy parameter. The
intraplane vortex-vortex repulsive interaction is given by a
modified Bessel function Uvv��ij�=2�0dK0��ij /	ab�. The
interplane attractive interaction between pancakes in
adjacent layers of altitude z and �z+s� reads as
Uvv��ij ,zij =s�= �2s�0 /���1+ln�	ab /s�����ij /2rg�2−1� for �ij

2rg and Uvv��ij ,zij =s�= �2s�0 /���1+ln�	ab /s����ij /rg−2�
otherwise; in this expression rg=�ab /�, where �ab is the in-
plane coherence length. This pairwise interaction results
from both electromagnetic and Josephson coupling.9

Finally, the attractive pinning potential is given by Uvp��ip�
=−�Ape−��ip / Rp�2

, where Ap= ��0d /2�ln�1+ �Rp
2 /2�ab

2 �� �Ref.
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10� and � is a tunable parameter. We consider periodic
boundary conditions of �Lx ,Ly� sizes in the �x ,y� plane,
while open boundaries are taken in the z direction.
Molecular-dynamics simulation is used for Nv vortex lines in
a rectangular basic cell �Lx ,Ly�= �5,6�3 /2�t	ab, with
t=1,2, and for a number of layers varying from Nz=19 to
Nz=1999. All details about our method for computing the
Bessel potential with periodic conditions can be found in
Ref. 11. The number of columnar pins is set to Np=Nv. We
consider the London limit �=	ab /�ab=90, with an average
vortex distance a0=	ab, and d=2.83
10−3	ab,
s=8.33
10−3	ab, Rp=0.22	ab, �=0.01, and �=1. We
choose the tunable pinning parameter �=1 /25 so that the
maximum pinning force is Fmax

vp 	F0 /5 where F0=2�0d /	ab
is the unit force defined by the Bessel interaction. All the
parameters values are identical to our T=0 previous study8

so that a direct comparison is possible.
The driving force FL is chosen high enough to obtain a

fully elastic flow at T=0. At low temperature, the vortex flow
remains elastic with no dislocations. The rough static chan-
nels observed at T=0 persist, except that they are broadened
by thermal fluctuations. Starting with such a lattice moving
in the x direction and the magnetic field H along the z axis,
we slowly vary the y component of H �Hz being fixed� in
order to obtain the transverse induction response. Figure 1�a�
shows the flux-line inclination tan �B=By /Bz averaged over
time versus the magnetic field inclination tan �H=Hy /Hz for
several thicknesses Nz. The response is linear at low angle,
with a finite slope which decreases when thickness is in-
creased and eventually vanishes in the Nz→� limit, as
shown in Fig. 1�b�. Such finite slope is explained in the inset
of Fig. 1�a�. The lines are curved at their extremities by the
tilt force while in the bulk they remain aligned with the z
axis, i.e., the transverse field only penetrates the sample near
its surfaces, resulting in the partial screening of Hy. This
supports that the finite response at low angle is a surface
effect. Figure 1�a� also shows that at a critical transverse

field, the line inclination experiences a jump associated with
an angular depinning transition of the vortex lines. Above
this transition, the lines display a kink structure in the yz
planes �see Fig. 3 of Ref. 8�. dz /dy is almost independent of
the line for a given y and periodic in the y direction, indicat-
ing that all the lines experience the same effective pinning
landscape, which has the invariance of the columnar pins and
the transverse periodicity of the channels. These results, very
similar to those obtained at T=0, strongly suggest the exis-
tence of the MBoG phase at finite temperature.

Since a finite transverse magnetic response at low angle is
expected in the CMG,7 a careful study of finite-size effects in
the z direction is crucial to discrimate MBoG from CMG. In
order to understand quantitatively the influence of thickness,
we study a model introduced in Ref. 12 and used in Ref. 8 to
describe the tilt of the lines at T=0 that we phenomenologi-
cally apply to quantities averaged over time in the finite tem-
perature case. It is a mean-field approach describing the an-
gular response of the vortex lattice in terms of a single elastic
line put in the effective pinning potential V�y� discussed
above. The energy E of a line of length L=Nzs is given by

E�u� = 

0

L

dz� c

2
�du

dz

2

+ V�u�� + f�u�L� − u�0�� ,

where u�z� is the one-dimensional displacement field in the y
direction, c=�2�0 is the elastic constant, and f �Hy /Hz is a
surface force. This expression of the energy does not take
explicitly into account thermal fluctuations; however, line
elasticity and effective potential can depend on temperature.
Minimizing E with respect to u�z� while expanding V qua-
dratically near a minimum leads to the following solution
u�z� for a line: u�z�=

z0f

c sinh� z−L/2
z0

� /cosh� L
2z0

�, where

z0=�c� d2V
du2 �u=0

−1 characterizes the thickness of the region
where the transverse field penetrates the sample near
the surface. The average line inclination is given by
tan �B= �u�L�−u�0�� /L=

2z0f

cL tanh� L
2z0

�. The above equation
for u�z� is observed to accurately fit the data, as shown in the
inset of Fig. 1�a�. z0 calculated from this fit is found to be
independent of both Nz and �H, which is consistent with the
observation that at low �H �i.e., when u�z� is small enough
for the quadratic expansion to be accurate�, tan �B is a linear
function of tan �H �see Fig. 1�a�� and tan �B� tanh� L

2z0
� /L

�see Fig. 1�b�� which is verified up to large thicknesses com-
pared with the penetration length. In the large thickness limit
L�z0, tanh� L

2z0
�	1 and the inclination scales as L−1, i.e., as

Nz
−1. From this, we conclude to a true vanishing response to

transverse field below a threshold in the infinite-thickness
limit, confirming that we are seeing MBoG and not CMG.
Finally, our results support the existence of the effective pin-
ning potential at T�0 and reinforce the interest of the simple
mean-field model—extended to finite temperatures provided
that simulated quantities are averaged over thermal
fluctuations—as a tool to describe DTME, including finite-
size effects. These behaviors have been observed in a wide
range of velocities from the appearance of the MBoG to the
highest velocities we can simulate because of duration issues
�over more than 4 orders of magnitude at T=10−7, over 3
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FIG. 1. �Color online� �a� Average vortex line inclination versus
field inclination at T=10−4 for v=10−2, Nv=30, and several thick-
nesses �circles� compared with disorder free linear response
�squares�. Inset: average shape of a line at low inclination for
Nz=149 and T=10−10 �thick brown line� and sinh fit �thin dashed
blue line�. �b� Slope d�tan �B� /d�tan �H� at low angle versus Nz for
T=10−10 �red circles� and T=10−4 �green triangles�. The solid blue
line is the tanh� L

2z0
� /L fit; the dashed green line is the Nz

−1 depen-
dence at large Nz.
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orders of magnitude at T=10−4�, i.e., we do not see the ex-
pected dynamical transition to CMG.7 Since the critical ve-
locity vc at which the transition to CMG is expected behaves
like 1 /Lc�Np�2 where Lc is the static Larkin length, a simi-
lar analysis has been performed for weaker pinning
strengths. No evidence of CMG phase has been found in that
case either.

We now fix the velocity �v=10−2� and study the
effect of temperature. At zero tilt ��H=0°�, we compute
CV= ��Et

2�− �Et�2� /kBT2 �Ref. 13� where Et is the total inter-
action energy �CV would be the specific heat at thermody-
namic equilibrium�. Together with CV, we plot in Fig. 2 the
slope d�tan �B� /d�tan �H� of the linear region of Fig. 1�a� at
low angle. At low temperature, d�tan �B� /d�tan �H� is re-
duced compared with the pinning free case and decreases
when thickness is increased, illustrating the DTME property
as seen previously. It experiences a jump around
T=2.5
10−4 while the thickness dependence vanishes, what
we interpret as the loss of DTME. Concomitantly, CV exhib-
its a sharp peak suggesting a dynamical phase transition.

To elucidate the nature of the phase obtained once MBoG
has disappeared, we compute in the xy plane the pair-
correlation function g�r�= ���r�+r���r��� �Ref. 13�, where
��r� is the vortex density, and the mean-square displacement
B1�t�= ��r�t�−r�0��2� �Ref. 13�, both at zero tilt. At low tem-
perature, the correlation function displays a triangular lattice
of peaks, in agreement with the expectation of a quasior-
dered lattice for an elastic moving glass; while above a criti-
cal temperature we find circular rings and short-range order,
signature of a disordered isotropic phase. In order to compare
the critical temperature obtained from the correlation func-
tion and the one obtained from CV, we calculate the height of
the peaks corresponding to the six first neighbors and the
background level. As shown in Fig. 3�a�, the collapse of
these two quantities—which indicates the loss of the sixfold
symmetry—occurs at the same temperature TC as the peak in
CV. In Fig. 3�b�, we plot the correlation function along the x
axis just below and above TC, pointing out the change in the
order range. This picture is confirmed by the study of the
mean-square displacement. Below the critical temperature
B1�t� is bounded, while above it grows linearly indicating a
diffusive wandering as expected in a liquid. However, the
diffusion coefficient is found to be a nonlinear function of

the temperature, suggesting that the motion is more complex
than a classic random walk. To sum up, at a critical tempera-
ture TC we simultaneously see the vanishing of both the
DTME and the lattice order, while the vortex displacements
go from bounded to diffusive. We conclude that the transition
observed is the dynamical melting of the MBoG into a mov-
ing vortex liquid �MVL�.

Finally, we take a look at the correlations along the vortex
lines in order to highlight the influence of the effective pin-
ning potential V. We plot in Fig. 4�a� the mean-square dis-
placement in the transverse direction within the lines
B2�zij�= ��yi−yj�2� �Refs. 13 and 14� where i and j are two
pancakes belonging to the same flux line and zij is the dis-
tance between the two layers they belong to. At low tempera-
ture B2 is bounded, each line being pinned in a minimum of
V. This pinning effect weakens as temperature is increased
and eventually vanishes at T=TC. The inset of Fig. 4�a�
clearly displays the jump in B2�T� associated with this tran-
sition. The high-temperature behavior can be understood by
assuming that only thermal fluctuations and line cohesion are
relevant. The length of each bond between two neighboring
pancakes is then an independent random variable, and the
line configuration is analog to a random walk in which z
would be the time, leading to the observed linear growth. We
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FIG. 4. �Color online� �a� B2�zij�= ��yi−yj�2� �zij is expressed in
units of layer spacing s� for T from 10−4 to 10−3, NV=30, Nz=149,
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v=10−2.
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conclude that the loss of localization along the z axis is a
manifestation of the disappearance of the effective pinning
potential. To be sure that this transition and the in-plane
melting are two aspects of the same phenomenon, we moni-
tor the time evolution of the quantities indicating the transi-
tion. Because of finite size, close enough to the transition the
system hesitates between different phases and continuously
switches from one to another. We can check in Fig. 4�b� that
the three indicators of the transition plotted versus time �total
energy, amplitude of correlation function at first-neighbors
peaks, and B2�L /2�� oscillate between two states, which we
identify, respectively, with MBoG �lower energy� and MVL
�highest energy�, and that in-plane and out-of-plane quanti-
ties jump simultaneously when the system goes back and
forth from one to the other. The effective pinning potential
thus persists in MBoG whatever the temperature and only
vanishes when melting occurs.

To conclude, we find evidence of the MBoG phase at
finite temperature, exhibiting DTME below a critical trans-
verse field. It is stable in a wide range of temperature and
velocity, respectively, up to the melting temperature and to
the highest velocities we are able to simulate. Weaker pin-
ning, which should lower the critical velocity vc, has also
been studied, but no evidence of the CMG phase has been
found in that case either. A reduced density of pinning cen-
ters should also lower vc and could be a direction to further
investigate the existence of CMG. We also predict the exis-
tence of an effective transverse static tin roof pinning poten-
tial in the MBoG phase. Since the CMG does not exhibit
DTME, we expect this potential to vanish in the CMG as it
does in the MVL.
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for helpful and stimulating discussions.
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